Los científicos crean audífonos que pueden ser controlados mentalmente

f2.large_

Un grupo de científicos ha presentado un trabajo para la decodificación auditiva con atención selectiva independiente del hablante, aún sin acceso a fuentes limpias de voz, para la creación de un audífono que permitiría al usuario enfocarse en voces particulares, y dicen que podría transformar la capacidad de las personas con discapacidad auditiva para hacer frente a entornos ruidosos. El dispositivo imita la capacidad natural del cerebro para seleccionar y amplificar una voz en una conversación en segundo plano. Hasta ahora, incluso los audífonos más avanzados funcionan al aumentar todas las voces a la vez, lo que se puede experimentar como una cacofonía de sonido para el usuario, especialmente en entornos abarrotados. Nima Mesgarani, quien dirigió el último avance en la Universidad de Columbia en Nueva York, dijo: “El área del cerebro que procesa el sonido es extraordinariamente sensible y poderosa. Puede amplificar una voz sobre otras, aparentemente sin esfuerzo, mientras que los audífonos de hoy todavía palidecen en comparación “. Esto puede dificultar severamente la capacidad del usuario para participar en conversaciones, lo que hace que las ocasiones sociales muy concurridas sean particularmente desafiantes.

Los científicos han estado trabajando durante años para resolver este problema, conocido como el cocktail party effect. El audífono controlado por el cerebro parece haber resuelto el problema usando una combinación de inteligencia artificial y sensores diseñados para monitorear la actividad cerebral del oyente. El audífono primero usa un algoritmo para separar automáticamente las voces de varias personas. Luego compara estas pistas de audio con la actividad cerebral del oyente. El trabajo anterior del laboratorio de Mesgarani descubrió que es posible identificar a qué persona le está prestando atención el usuario, ya que su actividad cerebral coincide en mayor grado con las ondas de sonido de esa voz. El dispositivo compara la voz de cada persona con las ondas cerebrales de la persona que usa el audífono. La persona cuyo patrón de voz coincide más con las ondas cerebrales del oyente se amplifica sobre los demás, lo que les permite sintonizar sin esfuerzo con esa persona.

Para probar el dispositivo, el laboratorio reclutó pacientes con epilepsia que ya tenían electrodos implantados en su cerebro para controlar la actividad de las convulsiones. Los pacientes escucharon audios de diferentes voces simultáneamente mientras sus ondas cerebrales fueron monitoreadas a través de los electrodos implantados en su cerebro. Un algoritmo siguió la atención de los pacientes mientras escuchaban a diferentes oradores que no habían escuchado previamente. Cuando un paciente se enfoca en una voz, el sistema la amplifica automáticamente, con un breve retraso. Y cuando su atención se desplaza a una voz diferente, los niveles de volumen se modifican para reflejar ese cambio.

La versión actual del audífono, que involucra implantes directos en el cerebro, no sería adecuada para el uso comercial. Pero el equipo cree que será posible crear una versión no invasiva del dispositivo dentro de los próximos cinco años, que monitorearía la actividad cerebral usando electrodos colocados dentro del oído o debajo de la piel del cuero cabelludo. El siguiente paso será probar la tecnología en personas con discapacidad auditiva. Una pregunta es si será tan fácil combinar la actividad cerebral en personas que están parcialmente sordas con las ondas sonoras del habla. Según Jesal Vishnuram, gerente de tecnología de la organización benéfica Action on Hearing Loss, una de las razones por las que las personas consideran que los audífonos convencionales imprácticos en entornos ruidosos es que su cerebro no está acostumbrado a filtrar sonidos, así que esto podría hacerlo menos eficaz.

 

Scientists create mind-controlled hearing aid.

 

IBM comparte el código de sus proyectos en IA para combatir el cáncer

medicine-001

IBM ha lanzado a la comunidad de código abierto tres proyectos de inteligencia artificial (IA) diseñados para asumir el desafío de curar el cáncer.  Se estima que el cáncer causó 9.6 millones de muertes en 2018, con un estimado de 18 millones de casos nuevos reportados en el mismo año. Los investigadores del grupo de Biología de Sistemas Computacionales de IBM en Zurich están trabajando en enfoques de IA y aprendizaje automático (ML) para “ayudar a acelerar nuestra comprensión de los principales impulsores y mecanismos moleculares de estas enfermedades complejas”, así como métodos para mejorar nuestro conocimiento de la composición de tumores.

El primer proyecto, denominado PaccMann, que no debe confundirse con el popular juego de computadora Pac-Man, se describe como la “Predicción de la sensibilidad del compuesto anticancerígeno con redes neuronales multimodales basadas en la atención”. IBM está trabajando en el algoritmo PaccMann para analizar automáticamente los compuestos químicos y predecir cuáles son los más propensos a combatir las cepas de cáncer, lo que podría acelerar este proceso. El algoritmo explota los datos sobre la expresión génica, así como las estructuras moleculares de los compuestos químicos. IBM dice que al identificar antes los posibles compuestos anticancerígenos puede reducir los costos asociados con el desarrollo de fármacos.

El segundo proyecto se llama “Influencia de la red de interacción de las representaciones vectoR de palabras”, también conocido como INtERAcT. Esta herramienta es particularmente interesante dada su extracción automática de datos de valiosos artículos científicos relacionados con nuestra comprensión del cáncer. INtERAcT tiene como objetivo hacer que el lado académico de la investigación sea menos pesado mediante la extracción automática de información de estos documentos. En este momento, la herramienta se está probando para extraer datos relacionados con las interacciones proteína-proteína, un área de estudio que se ha marcado como una posible causa de la interrupción de los procesos biológicos en enfermedades como el cáncer.

El tercer y último proyecto es el “aprendizaje de kernel múltiple inducido por la vía” o PIMKL. Este algoritmo utiliza conjuntos de datos que describen lo que sabemos actualmente sobre interacciones moleculares para predecir la progresión del cáncer y las posibles recaídas en los pacientes. PIMKL utiliza lo que se conoce como aprendizaje de múltiples núcleos para identificar vías moleculares cruciales para clasificar a los pacientes, brindando a los profesionales de la salud la oportunidad de individualizar y adaptar los planes de tratamiento.

El código de PaccMann e INtERAcT ha sido lanzado y está disponible en los sitios web de los proyectos. PIMKL se ha implementado en IBM Cloud y también se ha publicado el código fuente. Cada proyecto es de código abierto y ahora está disponible en el dominio público. IBM espera que al hacer que el código fuente esté disponible para otros investigadores y académicos, la comunidad científica pueda maximizar su impacto potencial.

 

IBM Gives Cancer-Killing Drug AI Project To the Open Source Community.

 

Intel presenta una computadora neuromórfica capaz de simular 8 millones de neuronas

neuromorphic-board

La ingeniería neuromórfica, también conocida como computación neuromórfica, describe el uso de sistemas que contienen circuitos analógicos electrónicos para imitar arquitecturas neurobiológicas presentes en el sistema nervioso.  Intel dio a conocer un sistema con el nombre “Pohoiki Beach”, una computadora de 64 chips capaz de simular 8 millones de neuronas en total.

Pohoiki Beach empaca 64 chips neuromórficos Loihi de 128 núcleos y 14 nanómetros, que se detallaron por primera vez en Octubre de 2017 en el taller Neuro Inspired Computational Elements (NICE) en Oregon. Tienen un tamaño de matriz de 60 milímetros y contienen más de 2 mil millones de transistores, 130.000 neuronas artificiales y 130 millones de sinapsis, además de tres núcleos de Lakemont para la orquestación de tareas. Excepcionalmente, Loihi cuenta con un motor de aprendizaje de microcódigo programable para el entrenamiento del chip de redes neuronales de pulso asíncrono (Spiking Neural Networks, SNN): modelos de inteligencia artificial que incorporan tiempo en su modelo operativo, de modo que los componentes del modelo no procesan datos de entrada simultáneamente. Esto se utilizará para la implementación de cálculos paralelos adaptativos, auto modificables, impulsados por eventos, y de alta precisión y eficiencia.

Las herramientas de desarrollo de Loihi comprenden la API en Python, un compilador y un conjunto de bibliotecas de tiempo de ejecución para construir y ejecutar SNN en Loihi. Esto proporciona una forma de crear un esquema de neuronas y sinapsis con configuraciones personalizadas, como el tiempo de caída, los pesos sinápticos y los umbrales de picos, y un medio para simular esos esquemas mediante la inyección de pulsos externos a través de reglas de aprendizaje personalizadas.

Según Intel, Loihi procesa información hasta 1.000 veces más rápido y 10.000 más eficientemente que los procesadores tradicionales, y puede resolver ciertos tipos de problemas de optimización con más de tres órdenes de magnitud en velocidad y eficiencia energética en comparación con las operaciones convencionales de CPU. Además, el fabricante de chips afirma que Loihi mantiene resultados de rendimiento en tiempo real y usa solo un 30% más de potencia cuando se amplía 50 veces, mientras que el hardware tradicional usa un 500% más de potencia. Y dice que el chip consume aproximadamente 100 veces menos energía que los métodos de mapeo y ubicación simultáneos utilizados por la CPU.

 

Intel’s Pohoiki Beach is a Neuromorphic Computer Capable of Simulating 8 Million Neurons.

 

Los ataques adversarios no son bugs, son features

adevrs-002

Investigadores han encontrado una nueva ventaja defensiva contra los ataques adversarios, informaron en la Conferencia Internacional sobre Representaciones de Aprendizaje. Este trabajo no solo puede ayudar a proteger al público, también ayuda a revelar por qué la IA, notoriamente difícil de entender, es víctima de tales ataques en primer lugar.

Para identificar esta vulnerabilidad, los investigadores crearon un conjunto especial de datos de entrenamiento: imágenes que a nosotros nos parecen una cosa, pero se parecen a otra para la IA; por ejemplo una imagen de un perro que, examinada de cerca por una computadora, es identifica como la de un gato. Luego, el equipo etiquetó erróneamente las imágenes, por ejemplo, calificando a la imagen del perro como gato, y entrenó un algoritmo para aprender las etiquetas. Una vez que la IA había aprendido a ver a los perros con rasgos de gato sutiles como gatos, lo probaron pidiéndole que reconociera imágenes nuevas y no modificadas. A pesar de que la IA se había entrenado de esta manera extraña, podía identificar correctamente a los perros, gatos, etc., casi la mitad del tiempo. En esencia, había aprendido a hacer coincidir las características sutiles con las etiquetas, independientemente de las características obvias.

El experimento de entrenamiento sugiere que las IA usan dos tipos de características: macros, obvias como orejas y colas que las personas reconocen, y micro que solo podemos adivinar. Además, sugiere que los ataques adversos no solo confunden una IA con ajustes sin sentido en una imagen. En esos ajustes, la IA está viendo inteligentemente rastros de otra cosa. Una IA puede ver una señal de stop como una señal de límite de velocidad, por ejemplo, porque algo acerca de los adhesivos en realidad hace que se parezca sutilmente a una señal de límite de velocidad de una manera que los humanos son demasiado ajenos a comprender.

Cuando el equipo entrenó un algoritmo en imágenes sin las características sutiles, su software de reconocimiento de imagen fue engañado por ataques adversos solo el 50% del tiempo, informaron los investigadores en la conferencia y en un trabajo publicado online. Eso se compara con una tasa de vulnerabilidad del 95% cuando la IA es entrenada con imágenes que incluyen los patrones obvios y los sutiles. En general, estos hallazgos sugieren que las vulnerabilidades de una IA se encuentran en sus datos de entrenamiento, no en su programación, dice Dimitris Tsipras de MIT, coautor.

 

Scientists help artificial intelligence outsmart hackers.

 

Algoritmos de aprendizaje profundo identifican estructuras en células vivas

nihms-1501928-f0001

Para los biólogos celulares, la microscopía de fluorescencia es una herramienta invaluable. Puede ayudar a los científicos a diferenciar estructuras subcelulares en imágenes microscópicas impenetrables. Pero esta técnica tiene sus inconvenientes. Hay límites en el número de etiquetas fluorescentes que se pueden introducir en una célula. El ingeniero biomédico Greg Johnson, del Allen Institute for Cell Science en Seattle, quería desarrollar un método para identificar los componentes de una célula viva en imágenes tomadas con microscopía de campo claro. Esta técnica es más sencilla y económica que la microscopía fluorescente, pero tiene una gran desventaja: produce imágenes que aparecen solo en tonos de gris, lo que hace que las estructuras internas de una célula sean difíciles de descifrar. Así que los científicos decidieron crear un algoritmo que pudiera combinar los beneficios de ambos métodos al aprender cómo detectar y etiquetar estructuras celulares de la forma en que pueden hacerlo las etiquetas fluorescentes, pero a partir de imágenes de campo claro.

Para hacer esto, el equipo recurrió al aprendizaje profundo, un enfoque de inteligencia artificial (IA) donde los algoritmos aprenden a identificar patrones en conjuntos de datos. Entrenaron redes neuronales convolucionales, un enfoque de aprendizaje profundo que normalmente se usa para analizar y clasificar imágenes, para identificar similitudes entre las imágenes de microscopía de campo claro y fluorescencia de varios componentes celulares, incluida la envoltura nuclear, la membrana celular y las mitocondrias. Después de comparar muchos pares de imágenes, el algoritmo fue capaz de predecir la ubicación de las estructuras que habrían etiquetado las etiquetas fluorescentes, pero en imágenes de campo claro en 3D de células vivas. Los investigadores encontraron que la herramienta era muy precisa: sus etiquetas predichas estaban altamente correlacionadas con las etiquetas fluorescentes reales para muchos componentes celulares. Johnson señala que una gran ventaja del método de su equipo es que, contrariamente a la creencia común de que los algoritmos de aprendizaje profundo requieren miles de imágenes para aprender, esta herramienta podría entrenarse con solo docenas de ejemplos.

El equipo ahora está investigando algunas aplicaciones potenciales de la técnica. Además de poder realizar estudios de imágenes más rápidos y baratos, la herramienta podría aplicarse en patología para ayudar a identificar células enfermas o para identificar rápidamente cómo cambian las estructuras celulares en los estados enfermos. Las técnicas que aplican el aprendizaje profundo al análisis de imágenes podrían ser útiles donde se use un microscopio o un telescopio. Este último estudio es “sólo la punta del iceberg”.

 

Deep Learning Algorithms Identify Structures in Living Cells.

 

Herramientas Artificialmente Inteligentes Capturan Movimiento Animal

leap-is-accurate-and-requires-little-training-or-labeled-data-a-part-wise-accuracy

Se tarda un promedio de 17 minutos para que una pareja de moscas de la fruta pase de encontrarse a aparearse. El encuentro está marcado por muchas etapas complejas, posiblemente más complejas que el cortejo humano. Talmo Pereira, un estudiante de doctorado que estudia neurociencia en los laboratorios de Joshua Shaevitz y Mala Murthy en la Universidad de Princeton, está estudiando cómo la danza del cortejo está representada en el cerebro de las moscas. Él y sus colegas desarrollaron un método poderoso para seguir el comportamiento animal. Su herramienta, LEAP Estimates Animal Pose (LEAP), aprovecha un tipo de inteligencia artificial llamada red neuronal profunda, esencialmente una “máquina fantástica que puede aprender a hacer… cualquier operación arbitraria para la que sea entrenada”, dice Diego Aldarondo, actualmente estudiante de doctorado en la Universidad de Harvard, quien construyó la herramienta con Pereira durante sus estudios universitarios en Princeton. “Desarrollamos toda esta inteligencia artificial solo para tratar de entender el sexo entre moscas”, bromea Pereira. “O ni siquiera el sexo realmente, solo lo que conduce a ello”.

Tradicionalmente, los investigadores han recopilado datos sobre los movimientos de los animales revisando videos cuadro por cuadro y etiquetando las partes del cuerpo de interés. Es un proceso laborioso que puede llevar a los estudiantes de grado o voluntarios horas y horas. El éxito de LEAP proviene de una combinación de aportes humanos y artificiales. Después de recibir un conjunto de cuadros de video etiquetados, los utiliza para aprender cómo se colocan los puntos de acuerdo con las características de cada imagen, y luego produce las etiquetas para el siguiente conjunto de cuadros, que posteriormente un investigador revisa. A fines del año pasado, publicaron una versión de la herramienta que necesita alrededor de 100 cuadros para lograr una precisión de hasta el 95 por ciento en el seguimiento de 32 puntos en el cuerpo de una mosca. En su informe, los investigadores utilizaron LEAP para rastrear las seis piernas de una mosca, más sus alas, cuerpo y cabeza. También aplicaron su herramienta para capturar los movimientos de las extremidades de un ratón.

Estas herramientas podrían tener aplicaciones en muchos campos, desde la ecología del comportamiento hasta la investigación médica, en donde podrían ayudar a estudiar trastornos como el autismo que están asociados con movimientos estereotipados. También ayudaría a los neurocientíficos a investigar las conexiones entre el cerebro y el comportamiento.

 

Artificially Intelligent Tools Capture Animal Movement.

 

La IA de Affectiva oye tu ira en 1.2 segundos.

emodet-002

Alexa de Amazon puede detectar el habla susurrada, así es como sabe cuándo susurrar. Pero ¿qué pasa con la inteligencia artificial que es capaz de percibir la frustración? La red neuronal de Affectiva del MIT Media Lab, SoundNet, puede clasificar la ira en datos de audio en tan solo 1,2 segundos, independientemente del idioma del hablante, igual que el tiempo que los humanos tardan en percibir la ira.

Los investigadores de Affectiva lo describen en un trabajo recientemente publicado. “Un problema importante en el aprovechamiento del poder de las redes de aprendizaje profundo para el reconocimiento de las emociones es la diferencia entre la gran cantidad de datos requeridos por las redes profundas y el pequeño tamaño de los conjuntos de datos de voz etiquetados con emociones”, escribieron los coautores del artículo. “Nuestro modelo de detección de ira entrenado mejora el rendimiento y generaliza bien en una variedad de conjuntos de datos emocionales actuados, provocados y naturales. Además, nuestro sistema propuesto tiene una baja latencia, adecuada para aplicaciones en tiempo real “.

SoundNet consiste en una red neuronal convolucional, un tipo de red neuronal comúnmente aplicada para analizar imágenes visuales, entrenada sobre un conjunto de datos de video. Para lograr que reconozca la ira en el habla, el equipo primero obtuvo una gran cantidad de datos de audio generales (dos millones de videos, o un poco más de un año) con el etiquetado producido por otro modelo. Luego, lo ajustaron con un conjunto de datos más pequeño, IEMOCAP, que contiene 12 horas de datos de emoción audiovisual anotados, que incluyen video, voz y transcripciones de texto. Para probar la generalización del modelo AI, el equipo evaluó su modelo entrenado en inglés sobre los datos de la emoción del habla en chino mandarín (el Corpus del habla afectiva del mandarín, o MASC). Informan que no solo se generalizó bien a los datos del habla en inglés, sino que fue efectivo en los datos chinos, aunque con una leve degradación en el rendimiento.

Finalmente dejan como trabajo futuro el aprovechar otros grandes conjuntos de datos disponibles públicamente, y  el entrenar sistemas de inteligencia artificial para tareas relacionadas con el habla, como reconocer otros tipos de emociones y estados afectivos.

 

Affectiva’s AI hears your anger in 1.2 seconds.