AI entrenada en viejos artículos científicos hace descubrimientos que los humanos pasaron por alto

41586_2019_1335_fig4_esm

Usando solo el lenguaje en artículos científicos antigüos, un algoritmo de aprendizaje automático fue capaz de hacer descubrimientos científicos completamente nuevos. En un estudio publicado en Nature el 3 de julio, los investigadores del Laboratorio Nacional Lawrence Berkeley utilizaron un algoritmo llamado Word2Vec para analizar artículos científicos buscando conexiones que los humanos hubieran pasado por alto. Su algoritmo arrojó predicciones para posibles materiales termoeléctricos, que convierten el calor en energía y se utilizan en muchas aplicaciones de calefacción y refrigeración. Sin embargo, el algoritmo no conocía la definición de termoeléctrico. No recibió formación en ciencia de los materiales. Usando solo asociaciones de palabras, el algoritmo pudo proporcionar candidatos para futuros materiales termoeléctricos, algunos de los cuales pueden ser mejores que los que utilizamos actualmente.

Para entrenar el algoritmo, los investigadores evaluaron el lenguaje en 3.3 millones de resúmenes relacionados con la ciencia de los materiales y terminaron con un vocabulario de aproximadamente 500,000 palabras. Alimentaron los resúmenes a Word2vec, que utiliza redes neuronales artificiales para analizar las relaciones entre las palabras. El algoritmo vinculó las palabras que se encontraron juntas, creando vectores de palabras relacionadas que ayudaron a definir conceptos. En algunos casos, las palabras estaban vinculadas a conceptos termoeléctricos, pero nunca habían sido escritas como termoeléctricas en ningún resumen considerado. Esta brecha en el conocimiento es difícil de atrapar con un ojo humano, pero es fácil de detectar para un algoritmo.

Después de mostrar su capacidad para predecir materiales futuros, los investigadores llevaron su trabajo en el tiempo, virtualmente. Desecharon datos recientes y probaron el algoritmo en documentos antiguos, viendo si podía predecir descubrimientos científicos antes de que sucedieran. Una vez más, el algoritmo funcionó. En un experimento, los investigadores analizaron solo los artículos publicados antes de 2009 y pudieron predecir uno de los mejores materiales termoeléctricos modernos cuatro años antes de que se descubriera en 2012.

Esta nueva aplicación de aprendizaje automático va más allá de la ciencia de los materiales. Debido a que no está atado a un conjunto de datos específicos, podría ser aplicado fácilmente a otras disciplinas, y volver a entrenarlo en la literatura de cualquier tema que se desee.

 

AI Trained on Old Scientific Papers Makes Discoveries Humans Missed.

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s