Algoritmos de aprendizaje profundo identifican estructuras en células vivas

nihms-1501928-f0001

Para los biólogos celulares, la microscopía de fluorescencia es una herramienta invaluable. Puede ayudar a los científicos a diferenciar estructuras subcelulares en imágenes microscópicas impenetrables. Pero esta técnica tiene sus inconvenientes. Hay límites en el número de etiquetas fluorescentes que se pueden introducir en una célula. El ingeniero biomédico Greg Johnson, del Allen Institute for Cell Science en Seattle, quería desarrollar un método para identificar los componentes de una célula viva en imágenes tomadas con microscopía de campo claro. Esta técnica es más sencilla y económica que la microscopía fluorescente, pero tiene una gran desventaja: produce imágenes que aparecen solo en tonos de gris, lo que hace que las estructuras internas de una célula sean difíciles de descifrar. Así que los científicos decidieron crear un algoritmo que pudiera combinar los beneficios de ambos métodos al aprender cómo detectar y etiquetar estructuras celulares de la forma en que pueden hacerlo las etiquetas fluorescentes, pero a partir de imágenes de campo claro.

Para hacer esto, el equipo recurrió al aprendizaje profundo, un enfoque de inteligencia artificial (IA) donde los algoritmos aprenden a identificar patrones en conjuntos de datos. Entrenaron redes neuronales convolucionales, un enfoque de aprendizaje profundo que normalmente se usa para analizar y clasificar imágenes, para identificar similitudes entre las imágenes de microscopía de campo claro y fluorescencia de varios componentes celulares, incluida la envoltura nuclear, la membrana celular y las mitocondrias. Después de comparar muchos pares de imágenes, el algoritmo fue capaz de predecir la ubicación de las estructuras que habrían etiquetado las etiquetas fluorescentes, pero en imágenes de campo claro en 3D de células vivas. Los investigadores encontraron que la herramienta era muy precisa: sus etiquetas predichas estaban altamente correlacionadas con las etiquetas fluorescentes reales para muchos componentes celulares. Johnson señala que una gran ventaja del método de su equipo es que, contrariamente a la creencia común de que los algoritmos de aprendizaje profundo requieren miles de imágenes para aprender, esta herramienta podría entrenarse con solo docenas de ejemplos.

El equipo ahora está investigando algunas aplicaciones potenciales de la técnica. Además de poder realizar estudios de imágenes más rápidos y baratos, la herramienta podría aplicarse en patología para ayudar a identificar células enfermas o para identificar rápidamente cómo cambian las estructuras celulares en los estados enfermos. Las técnicas que aplican el aprendizaje profundo al análisis de imágenes podrían ser útiles donde se use un microscopio o un telescopio. Este último estudio es “sólo la punta del iceberg”.

 

Deep Learning Algorithms Identify Structures in Living Cells.

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s